
Thread Migration to Improve Synchronization Performance

Srinivas Sridharan, Brett Keck, Richard Murphy, Surendar Chandra, Peter Kogge
Department of Computer Science and Engineering,

384 Fitzpatrick Hall, University of Notre Dame,
{ssridhar, bkeck, rcm, surendar, kogge}@nd.edu

Abstract

A number of prior research efforts have investigated
thread scheduling mechanisms to enable better reuse of
data in a processor’s cache. We propose to exploit the lo-
cality of the critical section data by enforcing an affinity
between locks and the processor that has cached the execu-
tion state of the critical section protected by that lock. We
investigate the idea of migrating threads to the “lock hot”
processor, enabling the threads to reuse the critical section
data from the processor’s cache and release the lock faster
for other threads. We argue that this mechanism should
improve the scalability of performance for highly multi-
threaded scientific applications. We test our hypothesis on
a 4-way Itanium2 SMP running the 2.6.9 Linux kernel. We
modified the Linux 2.6 kernel’s O(1) scheduler using in-
formation from the Futex (Fast User-space muTEX) mech-
anism in order to implement our policy. Using synthetic
micro-benchmarks, we show 10-90% performance improve-
ment in cpu cycles, L2 miss ratios and bus requests for ap-
plications that operate on significant amounts of data inside
the critical section protected by locks. We also evaluate our
policy for the SPLASH2 application suite.

Keywords:SMP, Multithreading, Synchronization, SMP
Scheduler, Thread Migration, Profiling and tuning applica-
tions, IntelR©Itanium2, Linux 2.6 Kernel, SPLASH2 suite

1 Introduction

Scheduling threads on shared memory multiprocessors
(especially SMPs) based on cache affinity has been previ-
ously investigated in [7], [17], [16] and [14]. These pro-
posals attempt to efficiently reuse the thread’s state that is
already in a processor’s cache by enforcing an affinity be-
tween the processor and the threads executing on them. In
this paper, we apply this idea to locks and data in critical
sections protected by these locks. The locality of the crit-
ical section data can be exploited by enforcing an affinity
between locks and the processor that has cached the execu-

tion state of the critical section protected by that lock. We
investigate the idea of migrating threads to the “lock hot”
processor, enabling the threads to reuse the critical section
data from the processor’s cache and release the lock faster
for other threads.

The main advantage of this approach is that since we are
enabling threads to be closer to the execution state accessed
within a critical section. This technique minimizes costly
cache misses and improves the cache locality awareness
of multithreaded scientific applications. Further, moving
threads that do not require the lock away from the processor
enables the thread holding the lock to complete its execu-
tion faster and release the lock quicker for other contending
threads. Finally reduction in cache misses also translates to
reduction in number of requests on the communication net-
work (shared bus in the case of small scale SMP) and indi-
rectly helps improve the scalability of the system by adding
more processors.

We argue that our policy should improve the perfor-
mance for highly multithreaded scientific applications. To
test our hypothesis we used a 4-way Itanium2 SMP run-
ning the 2.6.9 Linux kernel. We have extensively leveraged
the Linux 2.6 kernel’s O(1) scheduler and Futex (Fast User-
space muTEX) mechanism in order to implement our ideas.
The O(1) scheduler, which takes constant time irrespective
of the number of threads and the Futex mechanism, which
implements the OS support for user-level locks, provide
significant performance/scalability improvements to multi-
threaded applications over the earlier 2.4 kernel. Our ex-
perimental suite consists of seven hand-coded microbench-
marks and nine kernels/applications from the SPLASH2
suite. The microbenchmarks show a 10-90% performance
improvement in cpu cycles, L2 miss ratios and bus requests
for applications that operate on significant amounts of data
inside the critical section protected by locks. The SPLASH2
benchmarks also show significant performance improve-
ments for L2 miss ratios and bus requests for most appli-
cations in the suite.

The remainder of the paper is organized as follows: Sec-
tion 2 presents details on scheduling and synchronization

techniques under and presents some details on the Linux
Kernel scheduler. Section 3 presents the experimental setup
and Section 4 presents the results of our evaluation. Section
5 summarizes related work, Section 6 presents our conclu-
sions and suggests some future work.

2 Scheduling and Synchronization tech-
niques

In this section, we first present the conceptual overview
of our new scheduling policy. Then we provide a brief ex-
planation of the Linux 2.6.9 kernel scheduler and the futex
mechanism. Finally, we present the modifications we made
to the linux kernel to implement our policy.

2.1 Conceptual Overview

Our OS level synchronization technique relies heavily on
the kernel thread scheduler and requires the scheduler to be
aware of user-level locks. In other words, the kernel sched-
uler must be able to identify the thread that currently holds
a contended lock. Using this information, the kernel can
pin the thread and its execution state to a single cache for
reasonable amounts of time. The locality of the critical sec-
tion data can be exploited by moving threads that require
the same lock to the processor that is executing the thread
that currently holds the lock. In addition to this, we allow
the scheduler to move threads that do not require the lock
to other processors in the system, reducing the workload on
the processor whose cache holds the lock.

There are number of advantages in doing this. For ex-
ample, when a lock is released and the thread that blocked
on the lock is awakened, it directly uses the data in its lo-
cal cache rather than doing remote bus requests to fetch
the data. This is quite important given the fact that current
micro-processors are much faster than the memory subsys-
tem and the system bus, and hence have to use the data in
their caches very efficiently. Additionally this translates to
reduction in the number of requests in the bus and hence
improvement in the scalability of SMP systems. Further
the thread is able to perform the computation in the criti-
cal section faster and release the lock quicker since the data
is already present in its local cache. All these advantages
should speed up applications that have heavy synchroniza-
tion overhead.

2.2 Linux 2.6.Kernel Scheduler and Synchroniza-
tion support

The Linux kernel does not differentiate between pro-
cesses and threads as most operating systems do. Any ref-
erence to tasks or threads refer to the same entity since we
are primarily interested in multithreaded applications.

2.2.1 Scheduling

The Linux 2.6 kernel scheduler uses a O(1) algorithm i.e.
the scheduler is guaranteed to schedule tasks within a cer-
tain constant amount of time regardless of the number of
tasks currently on the system. This is largely made possible
by having separate run-queues for each physical processor
in the system. The distributed run queues also enables the
scheduler to provide better scheduling support for SMPs.
First, the load on each processor is estimated by multiply-
ing the number of active tasks on the run queue by a scaling
factor. This metric enables the scheduler to handle load im-
balance in the system. Further, this is also used to enforce
better “SMP affinity” i.e. tasks stay on the same run queue
(or processor) for longer so that they utilize the caches bet-
ter.

These techniques provide significant improvement over
the previous 2.4 kernel where threadsrandomlymigrated
across processors resulting in poor performance. In addition
to these improvements, we propose to migrate tasks when
they (un)block for synchronization events since they incur
heavy serialization overheads.

The Linux 2.6 kernel scheduler uses a variety of tech-
niques to schedule/migrate threads depending on the system
state. One way that threads are scheduled is by the Migra-
tion thread which is a per CPU high priority kernel thread.
When the load is unbalanced, the Migration Thread will mi-
grate threads from a processor that is carrying a heavy load
to a processor or processors that currently has light load.
The migration thread is activated based on a timer interrupt
to perform active load balancing or when requested by other
parts of the kernel. Another way that scheduling is done is
on a thread by thread basis. When each thread is unblocked
or is being scheduled to run, the scheduler will check to
see if it can run on its currently assigned processor, or if it
needs to be migrated to another processor to keep the load
balanced across all processors.

2.2.2 Synchronization

Since Linux 2.5.x kernel series, user level synchronization
is supported in the OS by using the kernel Futex (Fast
Userspace muTEX) mechanism. Futexes are light-weight,
and can be used as building blocks for implementing fast
user-level locks and semaphores in system libraries. For
example, the Linux 2.6 POSIX thread library also called as
NPTL (Native Posix Thread Library) uses futexes to imple-
ment pthreadmutex calls.

Operations on futexes start in the user-space but enter
the kernel when necessary using the thesys futex sys-
tem call. The Linux man pages definessys futex() as:
“...sys futex() system call provides a method for a pro-
gram to wait for a value at a given address to change, and a
method to wake up anyone waiting on a particular address”.

Migration
Thread

Current
Thread

Is Load
Balanced?

Find Threads
On Overloaded

Processor(s) Is
cpu_lock

set?

Is thread
on proper

cpu?

Move
thread to

proper cpu

Schedule
No

Yes
No

Yes

No Yes

Figure 1. Migration flow within the Scheduler

In short the kernel futex mechanism works as follows:

• When a futex is free, a user-level thread can acquire
the lock, but it does not need to enter the kernel to do
so. Similarly, the thread need not enter the kernel for
releasing an un-contended lock.

• When a futex is not free (lock is contended), a
thread wishing to acquire the lock will enter the ker-
nel. It is then queued along with all other previ-
ously blocked threads using thesys futex(...,
FUTEXWAIT, ...) system call.

• When a thread releases a lock that is contended,
it will enter the kernel and wake up one or more
blocked threads on the corresponding futex using the
sys futex(..., FUTEX WAKE, ...) system
call.

For threads sharing the same address space, a futex is
identified using the virtual address of the lock in the user-
space. This address is used to map into a kernel data struc-
ture that implements a hashed bucket of lock addresses. The
mechanism also provides support for inter-process commu-
nication, but the details of its working are beyond the scope
of this paper.

2.3 Linux 2.6.9 Kernel Modifications

2.3.1 FAST: Futex Aware Scheduling Technique

The goal behind our modifications is to create a link be-
tween the kernel futex mechanism and the scheduler, in
other words, to make the scheduler “futex aware”. This
additional knowledge enables the scheduler to make intel-
ligent decisions for threads that are contending for locks.
To do this, we modify three parts of the kernel: the thread
information table, the futex implementation, and the sched-
uler.

Thread Information Table is unique to each thread. This
table has an entry calledcpu to represent the physical
CPU on which the thread is currently on. We added a
new entry to the table calledcpu lock to represent
the physical CPU (lock hot processor) the thread will

need to run on when it acquires a lock. Upon the cre-
ation of a new thread, this field is initialized to value
larger than the number of processors in the system
calledCPULOCKINIT . In our case, for a four-way
SMP any value larger than four should work.

Futex Mechanism We added our modifications to the fu-
tex mechanism in thefutexwake() function which
in turn gets invoked by thesys futex(...,
FUTEXWAKE, ...) system call. When a thread
is releasing a contended futex (releasing thread), it
wakes up one of the threads already blocked (acquir-
ing thread) on the futex. Here, we set thecpu lock
for the acquiring thread to that of thecpu of the re-
leasing thread. As the releasing thread is no longer
waiting for the lock, we set itscpu lock value to
CPULOCKINIT .

Scheduler The scheduler checks thecpu lock when mi-
grating a thread or when trying to activate a blocked
thread. If the thread is being migrated due to
reasons not related to its synchronization activities
(cpu lock =CPULOCKINIT), then the scheduler
performs its operations as usual. In other cases, the
scheduler’s decisions is modified based on the follow-
ing heuristics:

• If a thread is already running on the processor
identified by thecpu lock value, the thread is
not migrated away from that processor.

• If a thread has acpu lock value defined (other
than CPULOCKINIT), migrate this thread to
the processor identified bycpu lock .

• In any case, if there is a problem with load bal-
ancing, the default scheduler thread migration
mechanisms have higher priority over our policy.

Figure 1 shows a brief flow of control within the linux
kernel scheduler. The shaded boxes represent additional
decisions introduced by our scheduling policy. The kernel
modifications we propose are non-intrusive to the normal
operation of the scheduler as long as threads do not block
for synchronization events such as contended locks. Ad-
ditionally since only one thread is awakened at a time, the
“lock hot” processor is not running heavy loads. Finally we
also do not interfere withwhich of the blocked threads is
awakened but we only change the decision ofwhere it is
awakened. The scheduler native support for load balancing
ensures that the processors do not become unbalanced over
time. Further, this also ensures that multiple locks do not
get assigned to the same processor.

In terms of source code we have added 20-30 lines to-
tally to both the scheduler and the futex mechanism. How-
ever since scheduler code is executed at high frequency the

Parameter Details
Server name HP Integrity rx4640-8

Server
SMP Type 4-way IntelR©ItaniumR©2

Processor Speed 1.5 GHz
L1I cache size (line size) 16Kb (64 Bytes)
L1D cache size (line size) 16Kb (64 Bytes)
L2 cache size (line size) 256KB (128 Bytes)
L3 cache size (line size) 4MB (128 Bytes)

Memory size 8 GB
Bus bandwidth 12.8 GB/s

OS kernel (Distribution) Linux 2.6.9 kernel (Red-
hat Linux Enterprise)

Table 1. Baseline system parameters

number of lines of source code may not represent the ac-
tual overheads. Further, preliminary analysis shows that
we have not modified the O(1) scheduling guarantees of the
scheduler. Theses issues are being further analyzed as part
of the future work.

3 Experimental Methodology

This section gives details on the experimental methodol-
ogy used in this study. The baseline system used for all the
experiments is presented in Table 1. The rest of this section
is organized as follows: first, we explain the performance
monitoring tools and metrics we used on the Linux IA64
environment. Next, we provide details on the microbench-
marks and applications that were used to evaluate the effect
of our modifications.

3.1 Performance Monitoring tools and Metrics

The Pfmon utility [1] is a performance monitoring tool
used to collect counts or samples from unmodified binaries
running on IA64 processors (Itanium, Itanium2). It can also
be used to profile an entire system. It uses the IA-64 hard-
ware performance counters and the Linux kernel perfmon
interface to monitor real applications. It makes full use of
the libpfm library to help in programming the IA-64 Perfor-
mance Monitoring Unit (PMU) [2].

For our experiments, we monitored the following
hardware events: CPU cycles (CPUCYCLES), num-
ber of bus requests (BUSALL SELF), L2 cache misses
(L2 MISSES), L2 cache references (L2REFERENCES),
L3 cache misses (L3MISSES), L3 cache references
(L3 REFERENCES). The L2 and L3 miss ratios were ob-
tained from the ratio of the respective misses and reference
numbers. Further each thread was monitored individually

and the metrics we aggregated over the values of all the
threads. Finally, we monitored the above events for both
user and kernel space.

3.2 Microbenchmarks and Benchmark Suites

3.2.1 Microbenchmarks

We developed seven microbenchmarks that specifically test
synchronization mechanisms and implemented them in C
language using Pthreads (POSIX Threads Library). The
seven microbenchmarks differ on a wide range of charac-
teristics including the number of locks, the access patterns
of shared data structures with the critical section, the com-
plexity of the critical section code and finally optimizations
that try to limit false sharing.

The first four microbenchmarks all use one lock to pro-
tect the critical section and the last three involve multiple
locks. All the threads execute the critical section in a loop,
with iterations ranging from 200,000 to 16 million. Further,
all the microbenchmarks are padded appropriately to take
care of false sharing. All microbenchmarks perform sig-
nificant amounts of random work outside the critical sec-
tion code. This is to ensure fairness in acquiring the lock
and performing critical section operations. In other words
threads dont iteratively just acquire/release locks but do per-
form some work in between successive locking operations.

All the microbenchmarks were designed using a method-
ology similar to [13] and [11]. Four of the microbench-
marks (Single counter, Multiple counter, Doubly linked list,
Producer Consumer) were previously mentioned in [8] and
[13]. We explain each of these microbenchmarks briefly.

Single Counter(singlectr) consists of a counter (fits in a
cache line) protected by a single lock and all threads
increment a single counter in a loop.

Multiple Counter(multiple ctr) consists of an array of
counters protected by a single lock and each thread in-
crements a different counter (fits in a cache line) in the
array.

Doubly Linked list(doubly list) consists of a doubly
linked list where threads dequeue elements from the
head and enqueues them on to the tail of the list.
The enqueue and dequeue operations are performed
independent of each other with separate lock acquire
and release operations. The doubly linked list is
protected by a single lock.

Producer Consumer(prod cons) consists of a shared
FIFO (bounded) array protected by a single lock that
is initially empty. Half the threads produce items into
the FIFO that are consumed by the other half threads.
Producers have to wait for free elements in the FIFO

Benchmark Problem size
Cholesky d750.o

FFT 224 points
LU-Cont (Contiguous) 2,048x2,048 matrices

LU-Noncont (Noncontiguous) 2,048x2,048 matrices
Radix 224 integers, radix 1024
Barnes 92,000 bodies
FMM 32,000 particles

Water-nsq (Nsquared) 9,261 molecules
Water-spa (Spatial) 9,261 molecules

Table 2. SPLASH2 problem sizes

whereas consumers have to wait for data to consume
before iterating the critical section code.

Affinity Counter(affinity) consists of two locks that pro-
tect two counters. During the first phase of each itera-
tion, each of the locks protects one of the counters and
during the second phase each of the locks protect the
other counter. A barrier is required between the two
phase to ensure atomicity.

Multiple Counters Multiple Locks(mlt ctr mlt lock) is
similar to the multiple counter microbenchmark, but
there are multiple locks protecting different segments
of the counter array. The threads dynamically choose
the lock to acquire and hence the counter to update
depending on its thread id.

Multiple FIFO(multiple fifo) is similar to producer con-
sumer microbenchmark, but there are multiple
locks each protecting a separate FIFO. Each pro-
ducer/consumer pair is dynamically assigned to a
FIFO depending on its thread id. Each thread ac-
quires/releases only the lock corresponding to the
queue it is assigned irrespective of whether it is pro-
ducing or consuming data.

3.2.2 SPLASH2 Benchmark Suite

SPLASH2 (Stanford Parallel Applications for Shared Mem-
ory) [18] consists of five kernels and eight applications
to test various characteristics of shared memory machines.
SPLASH2 codes utilize the Argonne National Laboratories
(ANL) parallel macros (PARMACS) for parallel constructs.
We used the Pthreads implementation of PARMACS by [3].
We used nine of the SPLASH2 kernels/applications with the
problem sizes listed in Table 2. Our problem sizes is larger
than the default problem sizes listed as part of SPLASH2
documentation. This was necessary since the base problem
sizes supported only 64 processors/threads.

-20

-10

0

10

20

30

40

50

60

70

80

affinity single_ctr multiple_ctr doubly_list prod_cons mlt_ctr_mlt_lock multiple_fifo

Benchmarks

%
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

4 threads 8 threads 16 threads 32 threads 64 threads 128 threads

Figure 2. Microbenchmarks: % Improvement
in number of CPU cycles for modified kernel
over unmodified kernel

4 Results

4.1 Microbenchmarks results

Each of the application/thread combination was run five
times and the results presented in these graphs represent
the data averaged over all the runs. For each benchmark,
we measure the percent improvement for 4, 8, 16, 32,
64, and 128 threads. These values were obtained using
pfmon with metrics such as CPUCYCLES, L2 MISSES,
L2 REFERENCES, L3MISSES, L3REFERENCES,
BUS ALL SELF and were calculated using the formula:
(((Base kernel value − Modified kernel value) ∗
100)/Base kernel value).

Figure 2 shows the percent improvement in cpu cycles
for the seven microbenchmarks in the modified kernel over
the unmodified kernel. For example, in the case of 128
threads, theaffinity shows an improvement of 50.9% im-
plying that the modified kernel ran this benchmark in half
the number of cpu cycles as the unmodified kernel. The
best improvements were obtained for the 4, 8, and 16-thread
cases, with peak improvements as high as 99%. Over-
all, an improvement of 18-75% is observed for five of our
seven microbenchmarks (affinity, singlectr, multiple ctr,
doubly list, mlt ctr mlt lock) for the range of threads un-
der consideration. The 4-thread case for prodcons, as well
as the 32, 64, and 128-thread cases for multiplefifo, do not
show an improvement. This is primarily due to the schedul-
ing overhead being higher than the synchronization over-
head for these cases.

Table 3. Microbenchmarks: % Improvement
in L2 and L3 miss ratios for modified kernel
over unmodified kernel

Micro Threads
Benchmark 4 8 16 32 64 128

Affinity 4.4 54.4 18.8 29.4 30.5 27.9
Counter 94.3 98.6 98.9 98.6 97.7 83.5
Single 34.8 11.4 17.5 13.8 10.9 10.5
Counter -0.6 0.1 0.4 -4.3 -5.1 -1.2
Multiple 36.4 14.9 16.9 15.2 11.7 9.1
Counter -1.3 0.2 1.2 -3.9 -4.6 -3.0
Doubly 42.0 29.8 31.7 21.2 22.7 15.2
Linked list -2.3 0.4 7.4 2.0 -0.9 -4.4
Producer 40.2 20.5 10.8 10.2 9.5 8.3
Consumer -0.9 0.5 1.9 -0.6 -4.9 -1.5
Mlt. Ctr 59.4 30.5 34.0 36.8 35.4 36.7
Mlt. Lock -0.1 4.9 16.4 10.0 2.4 0.1
Multiple 34.0 18.8 9.0 7.9 6.0 6.0
FIFO -0.8 0.5 2.9 -2.8 -4.3 -2.0

The percent improvement in the L2 and L3 miss ratios is
listed in Table 3. For each benchmark, the first row repre-
sents the L2 miss ratios and the second row represents the
L3 miss ratios. The boldface numbers represent the best
case percentage improvements for the L2 and L3 miss ra-
tios. All microbenchmarks show an improvement of 6-94%
for the L2 miss ratio. This improvement is a key artifact of
our modification, translating to a reduction in the number of
bus requests, cpu cycles, and L3 cache references.

However, it should be noted that the L3 miss ratios do
not show these same improvements, with a small negative
improvement in many cases. The lower L2 miss ratio gener-
ates a lesser number of L3 references in the modified kernel
compared to the unmodified kernel. Cold-start misses will
still occur, and the combination of these L3 cache misses
and the lower number of L3 references result in a higher L3
miss ratio for the modified kernel in many cases.

Figure 3 shows the percentage improvement in bus re-
quests for the microbenchmarks. As in the cpu cycles case,
the 4, 8, and 16-thread cases performed best, with improve-
ments ranging from 10-99%. In general, significant per-
formance improvements were observed until 16 threads af-
ter which the performance improvements started decreas-
ing due to system load and other overheads. Again, the 32,
64, and 128-thread cases of multiplefifo did not show im-
provement, as the overhead from scheduling this program
will outweigh the benefit created from the synchronization
improvement.

-20

0

20

40

60

80

100

affinity single_ctr multiple_ctr doubly_list prod_cons mlt_ctr_mlt_lock multiple_fifo

Benchmarks

%
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

4 threads 8 threads 16 threads 32 threads 64 threads 128 threads

Figure 3. Microbenchmarks: % Improvement
in number of requests on the bus

The affinity microbenchmark performs best across all
metrics, as it is specifically designed to create explicit affin-
ity between the locks and the data accessed within the crit-
ical section. In the unmodified kernel, since locks and crit-
ical section data are not pinned down to a particular cache,
the cache lines get transferred across processors more fre-
quently.

4.2 SPLASH2 Results

Table 4 shows the improvements in the L2 miss ratios
for SPLASH2 codes. We see improvements ranging from
a negative 5% to a positive improvement of 33%, with
most cases showing positive improvements. As in the case
of the microbencharks, the boldface numbers represent the
best case percentage improvements for L2 miss ratios. Fig-
ure 4 shows the percentage improvements for number of
bus requests. In general, the results show a fairly consis-
tent trend of providing better results for a higher number
of threads with increase in available parallelism. Figure 5
shows the performance improvements for cpu cycles. The
performance improvements range from a negative 39% to a
positive improvement of 10%, with most applications hav-
ing little or no performance improvements in terms of cpu
cycles.

We are currently investigating why some SPLASH2 ap-
plications do not show improvements as well as others, and
why many do not perform in a consistent basis. Specifically,
we are trying to determine why the improvements in L2/L3
miss ratios and the number bus requests have not translated
to corresponding improvements in cpu cycles.

Table 4. SPLASH2: % improvement in L2 miss
ratios for modified kernel over unmodified
kernel

Threads
Benchmark 4 8 16 32 64 128

Barnes 2.1 4.7 6.6 8.5 16.4 21.7
Cholesky 0.8 0.5 0.7 2.4 0.8 1.0
FFT 0.0 0.5 0.7 0.6 3.9 3.8
FMM -0.7 0.4 0.3 1.8 -0.7 2.7
LU-Cont -5.6 0.2 1.3 3.5 4.4 3.3
LU-Noncont 33.5 17.3 9.8 9.6 8.1 5.2
Radix 1.1 6.3 14.5 21.5 20.8 21.6
Water-Nsq 0.4 0.0 -0.2 -0.4 0.5 -0.7
Water-Spa 1.3 -1.2 -1.1 5.5 5.3 3.4

If benchmarks do not spend a high percentage of time
performing synchronization, then the scheduling overhead
introduced by our modification is will not offset by the ap-
plication’s synchronization overhead. We also conjecture
that SPLASH2 is tuned for 32 bytes cache block size in-
stead of the processors 128 byte block size. Further on the
Itanium processors pointers are 64-bit values. So if an ap-
plication mixes pointers and scalar data types inconsistently
without cache line sizes in mind then the application takes
a significant hit. Such issues may be even more important
with our modifications. We intend to investigate these is-
sues more thoroughly as part of future work.

5 Related Work

A variety of hardware and software techniques have
been proposed for supporting efficient synchronization.
These techniques allow efficient synchronization to be im-
plemented in user-level thread libraries [12], parallelizing
compilers, OS runtime [4] [5], atomic instructions such
as Test&set[9], memory consistency models [6], hardware
synchronization protocols [10], and cache coherency pro-
tocols [15] etc. We direct interested readers to the above
references for more information on the implementations.
Evaluation of synchronization mechanisms have also been
studied both by simulation [10] and on real systems [11],
[12]. We use the methodology presented in [11] and some
of the microbenchmarks used in this paper have previously
been used by [13] and [8].

The idea of cache affinity scheduling has been previously
explored in [7], [17], [16] and [14]. These proposals have
been evaluated using analytical models, simulations and on
real systems using both synthetic and real workloads. Simi-

-85

-65

-45

-25

-5

15

35

55

Barnes Cholesky FFT FMM LU_cont LU_noncont Radix Water_nsq Water_spa

Benchmarks

%
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

4 threads 8 threads 16 threads 32 threads 64 threads 128 threads

Figure 4. Splash2: % Improvement in num-
ber of bus requests for modified kernel over
unmodified kernel

-50

-40

-30

-20

-10

0

10

20

Barnes Cholesky FFT FMM LU_cont LU_noncont Radix Water_nsq Water_spa

Benchmarks

%
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

4 threads 8 threads 16 threads 32 threads 64 threads 128 threads

Figure 5. SPLASH2: % Improvement in num-
ber of CPU cycles for modified kernel over
unmodified kernel

lar to the previous papers we have tried to leverage the exe-
cution state that is already present in caches to speedup our
applications. However unlike the previous approaches we
primarily use synchronization events to guide our heuristic.

6 Conclusions and Future Work

In this paper, we exploit the locality of the critical sec-
tion data by enforcing an affinity between locks and the pro-
cessor. Using microbenchmarks, we show the potential for
large performance gains (up to 90%). We also show that
when an application is properly written with cache line size
in mind, we can further decrease the L2 miss ratio, and in
turn lower the L3 miss ratio, the number of bus requests,
and the cpu cycles for an application. Our scheduler helps
improve the performance for highly multithreaded scientific
applications.

We are currently working on an online mechanisms that
can identify circumstances under which our approach works
best and then dynamically switches the scheduler to use our
policy only for those cases. We are continuing our efforts
to optimize the scheduler by performing finer-grain traces
of the scheduler in order to fine-tune it and limit the over-
head introduced by our modifications. We also plan to test
our scheduling techniques on multi-core SMP systems, as
we hypothesize that our modifications could allow for even
larger improvements on such a system. Finally, we plan
to extend our testing to a wide variety of applications and
testing suites, so we can gain a better understanding of the
opportunities and limitations of our approach.

Acknowledgments

This material is based in part upon work supported by the
Defense Advanced Research Projects Agency (DARPA) un-
der its Contract No. NBCH3039003. The Itanium2 servers
were provided by a grant from HP with additional support
from NSF (CNS0447671, IIS0515674).

References

[1] Perfmon project. http://www.hpl.hp.com/research/linux/
perfmon/pfmon.php4.

[2] Intel R©Itanium R©2 Processor Reference Man-
ual for Software Development and Optimization.
http://www.intel.com/design/itanium2/manuals/251110.htm,
May 2003.

[3] E. Artiaga, N. Navarro, X. Martorell, and Y. Becerra. PAR-
MACS Macros for Shared-Memory Multiprocessor Envi-
ronments. Technical Report UPC-DAC-1997-07, Depart-
ment of Computer Architecture, UPC, Jan. 1997.

[4] U. Drepper. Futexes are tricky. http://people.redhat.com/
drepper/futex.pdf.

[5] H. Franke, R. Russell, and M. Kirkwood. Fuss, Futexes and
Furwocks: Fast Userlevel Locking. InProceedings of the
Ottawa Linux Symposium, Ottawa, Canada, 2002.

[6] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In
ISCA ’90: Proceedings of the 17th annual international
symposium on Computer Architecture, pages 15–26, New
York, NY, USA, 1990. ACM Press.

[7] A. Gupta, A. Tucker, and S. Urushibara. The impact of oper-
ating system scheduling policies and synchronization meth-
ods of performance of parallel applications. InSIGMET-
RICS ’91: Proceedings of the 1991 ACM SIGMETRICS con-
ference on Measurement and modeling of computer systems,
pages 120–132, New York, NY, USA, 1991. ACM Press.

[8] M. Herlihy and J. E. B. Moss. Transactional Memory: Ar-
chitectural support for lock-free data structure. InProceed-
ings of the 20th ISCA, pages 289–300. ACM Press, 1993.

[9] I. B. M. I. Inc. IBM System/360 Principles of Operation.
USA, May 1970.

[10] A. Kagi, D. Burger, and J. R. Goodman. Efficient Synchro-
nization: Let Them Eat QOLB. InProceedings of the 24th
Annual International Symposium on Computer Architecture
(ISCA), pages 170–180, Denver, Colorado, June 2–4, 1997.
ACM SIGARCH and IEEE Computer Society TCCA.

[11] S. Kumar, D. Jiang, R. Chandra, and J. P. Singh. Evaluat-
ing Synchronization on Shared Address Space Multiproces-
sors: Methodology and Performance.SIGMETRICS Per-
form. Eval. Rev., 27(1):23–34, 1999.

[12] J. M. Mellor-Crummey and M. L. Scott. Algorithms for
Scalable Synchronization on Shared-memory Multiproces-
sors. ACM Transactions Computing Systems, 9(1):21–65,
1991.

[13] R. Rajwar and J. Goodman. Transactional Lock-free Exe-
cution of Lock-based Programs. InProceedings of the 10th
ASPLOS, pages 5–17. ACM Press, 2002.

[14] M. S. Squiillante and E. D. Lazowska. Using processor-
cache affinity information in shared-memory multiprocessor
scheduling. IEEE Trans. Parallel Distrib. Syst., 4(2):131–
143, 1993.

[15] P. Stenstrom, M. Brorsson, and L. Sandberg. An adaptive
cache coherence protocol optimized for migratory sharing.
In ISCA ’93: Proceedings of the 20th annual international
symposium on Computer architecture, pages 109–118, New
York, NY, USA, 1993. ACM Press.

[16] J. Torrellas, A. Tucker, and A. Gupta. Evaluating the perfor-
mance of cache-affinity scheduling in shared-memory multi-
processors.Journal of Parallel and Distributed Computing,
24(2):139–151, 1995.

[17] R. Vaswani and J. Zahorjan. The implications of cache affin-
ity on processor scheduling for multiprogrammed, shared
memory multiprocessors. InSOSP ’91: Proceedings of
the thirteenth ACM symposium on Operating systems princi-
ples, pages 26–40, New York, NY, USA, 1991. ACM Press.

[18] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. InProceedings of the 22th Interna-
tional Symposium on Computer Architecture, pages 24–36,
Santa Margherita Ligure, Italy, 1995.

